July 3, 2001 Meeting Notes
In attendance:
John Carmack
Phil Eaton
Russ Blink
Neil Milburn
New supplies:
Stainless steel machine screw, bolt, and washer sets
McMaster stainless/Teflon test hose
Ultrasonic range finder
Re-geared KZCO ball valve
Various wiring supplies
Several types of metal screen and perforated sheet to
evaluate for pack retainers
It has been 30 days since my last contact with the FAA about
manned rocket ships, so I have sent a follow up mail.
I havent received a response from any of the composite
filament winding companies.
Bob is planning on having the manned vehicle frame completed
tomorrow.
We are meeting on Saturday at 3:00 for flight tests. Odds are good that we will have a couple
hours of work to do before a liftoff.
Range Finder Test Results
Tim Nolan built an ultrasonic range finder for us to try
using as an altimeter for the VTVL to help with automated landing.
We set up the ultrasonic range finder two meters from a
wall, and fired the 50lb thrust motor next to it.
media.armadilloaerospace.com/2001_07_03/RangeFinder.jpg
The log format is: signal strength 0-1023, range in meters,
velocity in m/s:
media.armadilloaerospace.com/2001_07_03/rangefinder.txt
A graph of the range values:
media.armadilloaerospace.com/2001_07_03/rangefinder.xls
Short answer: it lost its mind when the rocket fired.
This was more or less what we expected, but it is good to
have a definitive answer.
Tim is looking into some options with radar range finding,
but we will also be trying both pure inertial and inertial augmented GPS soon.
Braided Hoses
The braided hose from McMaster was slightly different than I
expected. I thought the swiveling NPT male ends were a custom hose end,
but it turns out they are flare hose ends with a normal flare to NPT fitting
included.
The JIC hose ends are flared the same as AN hose ends (37
degree flare, unlike the 45 degree SAE flare), but the diameters arent the
same. The ¼ hose and hose ends seems
to be in between AN 4 and AN 6 size.
They also have swaged on NPT male hose ends that don't
swivel at all, and are cheaper. For things that need an orientation, it
probably isn't worth the headache to try and Teflon wrap them until they
tighten to a correctly clocked angle, but we could often use a non-swivel on
one end of the hose to save a fitting if we wanted to.
I expect we will get all of our hoses made to order at
McMaster in the future, except for when we just need to put one together on the
spot.
I have seen a comment that the Earls SpeedFlex hose that we
have been using may have a thicker Teflon lining that commercial braided hose,
but the pressure ratings are actually slightly higher on the commercial hose,
and not having to worry about poking holes in your fingers when spreading the
steel braid is a nice benefit
Electronics Box
I finally wired a power switch on the outside, which is a
lot more convenient than disconnecting the battery. The switch is only rated for 30 amps, and we can draw nearly 40
intermittently, so it is a bit marginal.
Future vehicles that only use the solenoids for attitude control instead
of primary lift will actually draw significantly less power than the current
vehicle.
The accelerometer is installed and functioning.
I added wire looms around most of the edges.
The GPS socket is installed and wired, but for some reason
it isnt working yet.
There is still space in the box to fit a magnetometer and
the main throttle motor drive for the manned vehicle.
One odd problem that I am having is that the flight computer
fails to boot completely when it doesnt have a keyboard and video card hooked
up, but after I reset it once, it completes the boot normally. It always boots correctly with a keyboard
and video card installed.
On a whim, I took a lot of high frequency traces of the
noisy rate gyro signals and a 9v battery hooked directly up to the A/D
board. They were correlated fairly
well, although the scales were different.
I entertained the notion of building up a correction table and always
reading the reference voltage before and after reading a signal level, then
correcting for the system noise as determined by the reference voltage, but I
have enough sense to recognize that the proper solution for this really is in
the analog domain with just getting better conditioned power.
Phil and Russ got the driver / power board cut and drilled
today, and will hopefully be finishing it tomorrow.
Once we have the ball valve motor drive hooked up, the only
expected change in the electronics all the way to space shots will be in
improved communications. At a minimum,
I am going to need to change to an 802.11 card that allows an external antenna,
so we can use a more directional antenna mounted away from the electronics
box. I am beginning to think we might
be better off moving the entire radio outside the box, the same way we had to
with the GPS receiver. A higher powered
wireless Ethernet bridge would give us all the convenience we currently have,
but we might have to go to a low bandwidth AX25 style system over a serial
link. I suppose we could run PPP over
it to still keep telnet sessions, but I would probably just do some form of
dedicated protocol..
Orientation
This is a work-in-progress, but I am beginning to put
together a document about all the flight control issues:
media.armadilloaerospace.com/misc/orientation.htm
I have changed all axis to match NASAs conventions.
I have a little test program that displays the current
vehicle (electronics box) world space axis in real time 3D on the laptop, and
now that I do the full axis rotation instead of angular integration, it stays
correct for all possible vehicle rotations, including upside down
rotations. It also displays the
accelerometer data off of each axis, but I havent started tracking world space
velocity and translation yet because of the current sensor noise level.
Now that I have good power conditioning, I am going to see
exactly when a pure inertial navigation system breaks down, and to what
degree. Im pretty sure it will be good
enough for auto-land experiments in our 15 second powered flight time, but I have
less confidence in it working well enough after spending a minute coming down
with a drogue chute.
The complementary direction to explore is using the GPS to
reset position and velocity every second.
For landing on the same surface you launched from, the absolute accuracy
of GPS isnt important, just the relative noise and short term drift
characteristics. We should have some
traces on this in the next month or so.